针对于短连接而言,每一次发送接收数据即关闭连接,连接的处理逻辑比较简单,当然通信效率也会比较低。在大多数的TCP
通信场景中,往往是使用长连接操作,并采用异步全双工的TCP
通信模式,即所有的通信完全是异步。在这种场景下,gtcp.Conn
链接对象可能同时处于多个读写操作(gtcp.Conn
对象的数据读写操作是并发安全的),因此SendRecv
操作在逻辑上将会失效。因为当你在同一逻辑操作中发送完毕数据之后,随后立即获取数据有可能得到的是其他写操作的结果。
无论服务端还是客户端,都需要在独立的异步循环中封装使用Recv*
方法获取数据并通过switch...case...
处理数据(仅在一个goroutine
中全权负责读取数据),根据请求数据进行业务处理的转发。
也就是说,Send*/Recv*
方法是并发安全的,但是发送数据时要一次性发送。由于支持异步并发写,gtcp.Conn
对象不带任何缓冲实现。
我们通过一个完成的示例来说明一下如何在程序中实现异步全双工通信,完成示例代码位于:https://github.com/gogf/gf/v2/tree/master/.example/net/gtcp/pkg_operations/common
types/types.go
定义通信的数据格式,随后我们可以使用SendPkg/RecvPkg
方法来通信。
考虑到简化测试代码复杂度,因此这里使用JSON
数据格式来传递数据。在一些对于消息包大小比较严格的场景中,数据字段可以自行按照二进制进行封装解析设计。此外,需要注意的是,即使使用JSON
数据格式,其中的Act
字段往往定义常量来实现,大部分场景中使用uint8
类型即可,以减小消息包大小,这里偷一下懒,直接使用字符串,以便演示。
package types
type Msg struct {
Act string // 操作
Data string // 数据
}
funcs/funcs.go
自定义数据格式的发送/获取定义,便于数据结构编码/解析。
package funcs
import (
"encoding/json"
"fmt"
"github.com/gogf/gf/v2/net/gtcp"
"github.com/gogf/gf/.example/net/gtcp/pkg_operations/common/types"
)
// 自定义格式发送消息包
func SendPkg(conn *gtcp.Conn, act string, data...string) error {
s := ""
if len(data) > 0 {
s = data[0]
}
msg, err := json.Marshal(types.Msg{
Act : act,
Data : s,
})
if err != nil {
panic(err)
}
return conn.SendPkg(msg)
}
// 自定义格式接收消息包
func RecvPkg(conn *gtcp.Conn) (msg *types.Msg, err error) {
if data, err := conn.RecvPkg(); err != nil {
return nil, err
} else {
msg = &types.Msg{}
err = json.Unmarshal(data, msg)
if err != nil {
return nil, fmt.Errorf("invalid package structure: %s", err.Error())
}
return msg, err
}
}
gtcp_common_server.go
通信服务端。在该示例中,服务端并不主动断开连接,而是在10秒后向客户端发送doexit
消息,通知客户端主动断开连接,以结束示例。
package main
import (
"github.com/gogf/gf/v2/net/gtcp"
"github.com/gogf/gf/v2/os/glog"
"github.com/gogf/gf/v2/os/gtimer"
"github.com/gogf/gf/.example/net/gtcp/pkg_operations/common/funcs"
"github.com/gogf/gf/.example/net/gtcp/pkg_operations/common/types"
"time"
)
func main() {
gtcp.NewServer("127.0.0.1:8999", func(conn *gtcp.Conn) {
defer conn.Close()
// 测试消息, 10秒后让客户端主动退出
gtimer.SetTimeout(10*time.Second, func() {
funcs.SendPkg(conn, "doexit")
})
for {
msg, err := funcs.RecvPkg(conn)
if err != nil {
if err.Error() == "EOF" {
glog.Println("client closed")
}
break
}
switch msg.Act {
case "hello": onClientHello(conn, msg)
case "heartbeat": onClientHeartBeat(conn, msg)
default:
glog.Errorf("invalid message: %v", msg)
break
}
}
}).Run()
}
func onClientHello(conn *gtcp.Conn, msg *types.Msg) {
glog.Printf("hello message from [%s]: %s", conn.RemoteAddr().String(), msg.Data)
funcs.SendPkg(conn, msg.Act, "Nice to meet you!")
}
func onClientHeartBeat(conn *gtcp.Conn, msg *types.Msg) {
glog.Printf("heartbeat from [%s]", conn.RemoteAddr().String())
}
gtcp_common_client.go
通信客户端,可以看到代码结构和服务端差不多,数据获取独立处于for
循环中,每个业务逻辑发送消息包时直接使用SendPkg
方法进行发送。
心跳消息常用gtimer
定时器实现,在该示例中,客户端每隔1秒主动向服务端发送心跳消息,在3秒后向服务端发送hello
测试消息。这些都是由gtimer
定时器实现的,定时器在TCP
通信中比较常见。
客户端连接10秒后,服务端会给客户端发送doexit
消息,客户端收到该消息后便主动断开连接,长连接结束。
package main
import (
"github.com/gogf/gf/v2/net/gtcp"
"github.com/gogf/gf/v2/os/glog"
"github.com/gogf/gf/v2/os/gtimer"
"github.com/gogf/gf/.example/net/gtcp/pkg_operations/common/funcs"
"github.com/gogf/gf/.example/net/gtcp/pkg_operations/common/types"
"time"
)
func main() {
conn, err := gtcp.NewConn("127.0.0.1:8999")
if err != nil {
panic(err)
}
defer conn.Close()
// 心跳消息
gtimer.SetInterval(time.Second, func() {
if err := funcs.SendPkg(conn, "heartbeat"); err != nil {
panic(err)
}
})
// 测试消息, 3秒后向服务端发送hello消息
gtimer.SetTimeout(3*time.Second, func() {
if err := funcs.SendPkg(conn, "hello", "My name"s John!"); err != nil {
panic(err)
}
})
for {
msg, err := funcs.RecvPkg(conn)
if err != nil {
if err.Error() == "EOF" {
glog.Println("server closed")
}
break
}
switch msg.Act {
case "hello": onServerHello(conn, msg)
case "doexit": onServerDoExit(conn, msg)
case "heartbeat": onServerHeartBeat(conn, msg)
default:
glog.Errorf("invalid message: %v", msg)
break
}
}
}
func onServerHello(conn *gtcp.Conn, msg *types.Msg) {
glog.Printf("hello response message from [%s]: %s", conn.RemoteAddr().String(), msg.Data)
}
func onServerHeartBeat(conn *gtcp.Conn, msg *types.Msg) {
glog.Printf("heartbeat from [%s]", conn.RemoteAddr().String())
}
func onServerDoExit(conn *gtcp.Conn, msg *types.Msg) {
glog.Printf("exit command from [%s]", conn.RemoteAddr().String())
conn.Close()
}
服务端输出结果
2019-05-03 14:59:13.732 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:14.732 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:15.733 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:15.733 hello message from [127.0.0.1:51220]: My name"s John!
2019-05-03 14:59:16.731 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:17.733 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:18.731 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:19.730 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:20.732 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:21.732 heartbeat from [127.0.0.1:51220]
2019-05-03 14:59:22.698 client closed
客户端输出结果
2019-05-03 14:59:15.733 hello response message from [127.0.0.1:8999]: Nice to meet you!
2019-05-03 14:59:22.698 exit command from [127.0.0.1:8999]
代码分层的意义在于将程序逻辑进一步解耦,将层级之间的数据流和依赖关系设计为单向链路,使得系统架构更加灵活易扩展。一、基本...
func main() {app := iris.Default()// Query string parameters are parsed using the existing underlying request object.// ...
普通路由r.GET("/get",func(c *gin.Context) {})r.GET("/login",func(c *gin.Context) {})r.POST("/login",func(c *gin.Context)...
classtornado.tcpclient.TCPClient(resolver:Optional[tornado.netutil.Resolver]=None)一个非阻塞的TCP连接工厂。在5.0版中更改...
该模块包含各种第三方身份验证方案的实现。此文件中的所有类都是类混合,旨在与tornado.web.RequestHandler类一起使用。它们...
FastAPI提供了以下内容:基于开放标准用于创建 API 的OpenAPI包含了路径操作,请求参数,请求体,安全性等的声明。使用JSON Sche...
某些情况下,需要向客户端返回错误提示。这里所谓的客户端包括前端浏览器、其他应用程序、物联网设备等。需要向客户端返回错误提...
url_for()函数对于动态构建特定函数的URL非常有用。url_for()函数接受函数的名称作为第一个参数,以及一个或多个关键字参数,每...
缓存系统需要少量的设置。也就是说,你必须告诉它你的缓存数据应该放在哪里 —— 是在数据库中,还是在文件系统上,或者直接放在...